
PHYSICAL REVIEW E 69, 036410 ~2004!
Characterizing potentials using the structure of a one-dimensional chain demonstrated
using a dusty plasma crystal

Bin Liu,* K. Avinash, and J. Goree†

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
~Received 29 July 2003; published 31 March 2004!

A procedure was developed to characterize the interparticle potential in a lattice that is confined by an
external potential. The first of the two steps is to characterize the confining potential, which can be done using
various schemes involving observations of particle motion. The second step is to characterize the interparticle
potential using measurements of the equilibrium particle positions. This can be done with either of two
methods developed here, a force-balance method or a simpler equation-of-state method. To demonstrate and
test these methods, an experiment and a molecular dynamics simulation were performed with a one-
dimensional Coulomb chain of particles confined in a parabolic potential. The experiment used a dusty plasma
consisting of charged microspheres levitated in the plasma sheath above a narrow groove in a lower electrode.
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I. INTRODUCTION

We develop a procedure to characterize the interpart
potential in a lattice that is confined by an external potent
based on knowledge of the external potential and equilibr
positions of the particles. This procedure is useful for
kinds of interparticle potential, but here we will apply it on
to the case of mutually repulsive particles.

Charged particles of the same polarity are mutually rep
sive, and when they are confined in an external poten
they can arrange themselves into a lattice structure. Elect
at the surface of liquid helium can form into a two
dimensional Wigner crystal@1,2#, or they can be confined
into a one-dimensional charged system@3#. Atomic ions can
form into a one-dimensional Coulomb chain in a linear P
trap@4#, or a two-dimensional lattice in a cylindrical Pennin
trap @5#.

The structure of a lattice subjected to an external poten
is determined by the balance between the interparticle po
tial and the external potential. The mutual repulsion betw
like charges causes an outward pressure, while the exte
potential counteracts this repulsion, forcing the particles
gether. Adding more particles compresses a crystal, redu
the particle spacing.

In a dusty plasma, small particles of solid matter are el
trically charged and suspended in a plasma. Under some
ditions, when there is sufficient damping, the particles w
arrange themselves into a lattice structure termed pla
crystal. A plasma crystal can be a three-dimensional sus
sion @6#, a two-dimensional lattice@7–9#, or a one-
dimensional chain@10,30#. Like a conventional molecula
solid, this kind of crystal exhibits solid behavior such as
melting-freezing transition@11,12# and phonon propagatio
@13–15#.

In a plasma crystal, the external potential is provided b
sheath@16# above a horizontal lower electrode. In the vertic
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direction, the sheath has a strong electric field that levita
particles against the downward force of gravity. In the ho
zontal direction, particles are confined due to the curvat
of the sheath edge, corresponding to a small inward horiz
tal component of the sheath electric force, which compres
the particles together.

In a plasma crystal, the interaction between charged
ticles is a Coulomb repulsion, which is screened by the a
bient plasma. For only two particles levitated on the sa
horizontal plane in a sheath, Konopkaet al. @17# demon-
strated that the binary interaction was accurately modeled
a Yukawa potential,

f~r !5
Q2

4pe0

e2r /lD

r
, ~1!

wherer is the distance between two particles,Q is the par-
ticle charge, andlD is the shielding length. In that exper
ment, only the potential in the horizontal plane were char
terized.

The potential can, however, be anisotropic with an sm
attractive element, due to an ion wakefield downstream o
particle in a flowing plasma@18#. This wakefield has a sig
nificant effect for a multilayer particle suspension in
sheath. Nevertheless, for a monolayer suspension, the w
field has little effect in the horizontal plane where the p
ticles are suspended. Thus, it is common to model the in
action for a monolayer plasma crystal as a simple Yuka
potential@19#, as we shall do here.

For a dusty plasma, various methods have been develo
for measuringQ andlD , and these methods can be group
according to whether they rely on measurements of part
motion or equilibrium particle positions. Methods relying o
particle motion include vertical resonance vibration@20#,
particle mean-square displacement@21#, and dispersion-
relation fitting @22,23#. Methods using measurements
equilibrium particle position include approaches relying
measurements of particle spacing within a two-dimensio
lattice @24# and of height in the vertical electric field of th
sheath@16#.
©2004 The American Physical Society10-1
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We have developed a complete procedure to characte
the interparticle potential. As presented here, the proced
works for a one-dimensional chain, i.e., a single row of p
ticles of limited length. It might also be possible to exte
the procedure to two or three dimensions. This procedure
two steps. First, the confining potential is determined. S
ond, the interparticle potential is characterized using eit
the force-balance method of Sec. III or the equation-of-s
method of Sec. VIII. Both of these methods require meas
ing equilibrium particle positions, and they assume that
confining potential is the same, regardless of the length
the chain. These two methods require measurements
chains of at least two different lengths, if the interpartic
potential has two free parameters, e.g.,Q and lD for a
Yukawa potential

We apply this procedure to a plasma crystal. We carry
both steps of the procedure, characterizing the profile of
confining potential and then the interparticle potential b
tween charged particles suspended in a plasma. Anothe
plication of the force-balance method is as a sensitive sh
diagnostic tool, as we will discuss.

II. CHARACTERIZING THE CONFINING POTENTIAL

The first step of the procedure is to determine the pro
of the confining potential. How this is done will depend o
the particular physical system. Here we review two meth
that have been used for a plasma crystal: single particle
tion and center-of-mass oscillation.

For a single particle in the plasma sheath, the profile
the confining potential can be derived by analyzing the
jectory of the particle motion in the horizontal plan
Konopka et al. @17# used a positively-biased probe to di
place a single particle and then observed its motion as it
restored toward its equilibrium position. Another approa
which works even if the confining potential profile is n
parabolic, is to accelerate a single particle using laser ra
tion pressure@25#. From the particle’s trajectory, one ca
calculate the confining potential, as well as radiation press
and gas drag.

The confining potential can be also characterized by
frequency of center-of-mass oscillation, which is the sa
for multiple particles as for a single particle. One can o
serve the motion of all particles in a one-dimensional ch
and calculate the velocity of the center of mass of the p
ticles. From the spectrum of this velocity, one can obtai
resonance frequency,v, Ref. @26#, which is sometimes
termed the sloshing-mode frequency. The confining poten
can then be calculated fromv, if the confining potential has
a parabolic shape. To verify that the profile of the confini
potential has a parabolic shape, one can check that harm
ics of v are absent from the spectrum.

All of the methods described above to characterize
confining potential rely on measuring the motion of particl
and therefore require knowledge of particle mass. After ch
acterizing the confining potential, the next step is to use
ther the force-balance method of Sec. III or the equation
state method of Sec. VIII to characterize the interparti
potential. These two methods are based on measuremen
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equilibrium positions of particles, and therefore do not
quire any knowledge of particle mass.

The confining potential in our experiment is provided
the apparatus shown in Figs. 1 and 2. Particles are levit
in a sheath, and this sheath has a curvature so that part
are confined by a bowl-shaped potential that is parabolic
every direction. The combination of a repulsive interpartic
potential and the confining potential causes the particle
arrange in a one-dimensional chain, as shown in Fig. 3. M
details of the experiment are presented in Sec. VI.

III. FORCE-BALANCE METHOD

The second step of the procedure is to use either
force-balance method presented here, or the sim
equation-of-state method in Sec. VIII, to characterize the

FIG. 1. ~a! Sketch of the apparatus.~b! Sketch of particles,
levitated in a plasma sheath above a groove in the lower electr
The combination of an interparticle repulsive potential and the c
finement, provided by an electric sheath that conforms to the sh
of the electrode, causes the particles to arrange themselves i
one-dimensional chain. Particles are imaged using a video cam
from above.

FIG. 2. Photograph of the lower electrode. Particles are sha
into the plasma; they settle into the sheath above the electrode.
to the curvature of the sheath, they collect, forming a o
dimensional chain above the central groove.
0-2
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terparticle potential. The development of these two meth
is the chief purpose of this paper.

In this section, we develop the force-balance method fo
lattice that is confined by an external potential. This meth
can be used to characterize the interparticle potential us
knowledge of the external confining potential, as we shall
in this paper.~Alternatively, if the interparticle potential and
its parameters were known, this method could be used
reverse to determine the confining potential.!

The force-balance method is based upon a zero net fo
acting on each particlei in a lattice. Including the repulsions
applied by other particles and the external confining pot
tial, the net force is zero if the particlei is at its equilibrium
position,

(
j

“f~r i ,r j !1QE~r i !50, i 51,2, . . . ,N, ~2!

wheref is the interparticle potential for the particles at p
sitionsr i andr j , andE(r i) is the external electric field atr i .
In Eq. ~2! we also assume the particles are identical, with
same chargeQ.

Equation~2! is used to find the interparticle potentialf,
and the way this is done will depend on the number of fr
parameters in the interparticle potential. If the interparti
potential has only one parameter, for exampleQ in the case
of a bare Coulomb repulsionQ2/4pe0ur i2r j u, then it is suf-
ficient to apply Eq.~2! to a single snapshot showing th
equilibrium positions of the particles in a single lattice. If th
potential has two parameters, for example,Q andlD in the
case of a Yukawa repulsion, then Eq.~2! must be applied
using particle positions for not just one, but two differe
lattices. These two lattices can be distinguished by a differ
number of particlesN.

Using Eq. ~2!, the force-balance method can be impl
mented as follows:~i! measure particle positions in a lattic
that is confined by an external potentials;~ii ! establish the
relations between interparticle potential and the external c
fining potential from Eq.~2!; ~iii ! if the interparticle potential
has more than one parameters, find these parameters us
graph, in which the relation for each lattice is represented
a curve and the intersection of the curves yields the des
parameters;~iv! confirm that the particle positions and th
result for the interparticle potential are consistent with t
form of the confining potential that we used. Finally, if th

FIG. 3. Image of chains of three different lengths. The parti
spacinga decreases withN. Within a chain, the particle spacing i
compressed more in the center, due to the confining potential.
three images shown here were recorded separately; there was
one chain presented above the groove at a time.
03641
s

a
d
g

o

in

ce

-

e

e
e

t
nt

-

n-

g a
y
d

e

confining potential is not parabolic, it may be necessary
perform an iterative loop to refine the parameters for
confining potential and the interparticle potential.

In comparison to other methods that require measu
ments of particle motion, the force-balance method requ
only a few snapshots of particle positions, and it does
need information of local plasma conditions in the sheath
one chooses the simpler equation-of-state method in S
VIII, our procedure is probably quicker than most metho
relying on measurements of particle motion.

Our force-balance method is comparable to an ear
method that was reported for a two-dimensional plasma c
tal @24#. Both are based upon a balance of force or press
in a lattice, and they both use measurements of particle
sitions. Our force-balance method, however, differs from
method of Ref.@24# in two ways. First, we use the exac
position of each particle rather than discarding this inform
tion by assuming a continuous medium. Second, we find
relations between the interparticle potential and the exte
confining potential, corresponding to lattices of two or mo
sizes, and then we find the parameters they have in comm
In contrast, in Ref.@24# the particle spacing or crystal siz
was fit to a function of particle number.

IV. FORCE-BALANCE METHOD FOR A YUKAWA
INTERACTION

In this section, we develop the force-balance method s
cifically for a plasma crystal, with a Coulomb interaction th
is screened by an ambient plasma. Here, we assume tha
interparticle potential is modeled as a Yukawa repulsion, a
the confining potential is provided by a curved sheath.
neglect any additional forces a particle might experience
plasma @27,28#, and we assume that the only significa
forces in determining lattice structure in the horizontal dire
tion are the particle-particle interaction and the sheath e
tric force. This is a reasonable assumption for one- and t
dimensional plasma crystals because the other forces, su
gravity, usually act in the direction perpendicular to a mon
layer suspension.

In a plasma crystal, the force balance, Eq.~2!, becomes

QE~j i !5
Q2

4pe0lD
2 (

j Þ i

j j2j i

uj j2j i u3
~11uj j2j i u!e2uj j 2j i u,

~3!

wherej i5xi /lD , xi is the particle’s position, andE(j i) is
the electric field due to the confining potential. Here, w
assume that all the particles are on a common axis, i.e.,
form a one-dimensional chain. It might also be possible
develop Eq.~2! for a two or three-dimensional lattice, but th
math would be less simple.

Equation~3! is written in a form that can be used for
confining potential of arbitrary shape. Hereafter, howev
we will assume a parabolic confining potential. This assum
tion can be verified experimentally as described in Sec. II
fact, most plasmas do have a potential profile with a ma
mum that can be locally approximated by a parabola. In c
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LIU, AVINASH, AND GOREE PHYSICAL REVIEW E69, 036410 ~2004!
that the potential is not parabolic, our method could in pr
ciple be extended by performing an iterative loop.

For a parabolic confining potentialQE(j)5mv2j. Thus,
Eq. ~3! reduces to

hj i5
1

2lD
3 (

j Þ i

j j2j i

uj j2j i u3
~11uj j2j i u!e2uj j 2j i u ~4!

for the i th particle at positionj i . Here we have defined
variable

h5
2pe0mv2

Q2
, ~5!

which has units of m23 and serves as a measure of the re
tive importance between the Coulomb repulsion in the
nominator, and the external confining potential in the n
merator. The right side of Eq.~4! only depends on particle
positions andlD . Using a value forlD , we calculate the
right side of Eq.~4! for each particlei, and linearly fit the
data forhj i from Eq. ~4! vs j i to a straight line. This yields
the slope of the line, which ish. We then repeat for othe
values oflD , yielding a curve forh vs lD . We term this
curve as the ‘‘parameter curve.’’

The parameters for the interparticle potential are obtai
from the intersection of the parameter curves ofh vs lD for
a minimum of two chains, each with a different length. Th
method of solution assumes that the chains were meas
under the same experimental conditions, so that the confi
potential and the parameters for the interparticle poten
were the same. In a plasma crystal, this requires that
chains should be formed at same discharge conditions.

V. SIMULATION TEST OF THE FORCE-BALANCE
METHOD

As a test of the force-balance method, we performe
molecular dynamics simulation. We integrated each partic
equation of motion,mr̈ i52“((f i j 1F i

ext)2nEmṙ i , where
f i j is the binary Yukawa interparticle interaction of Eq.~1!.
The confining potential is parabolic,F i

ext5m(vx
2xi

2

1vy
2yi

2)/2, and the gas drag isnEmṙ i . Here,r i5(xi ,yi) is
measured from the minimum of the confining potential. W
allowed the simulation to run until all particle motion wa
damped and the particles had settled into equilibrium p
tions. It is important to note thatQ andlD are input param-
eters for the simulation.

We used the particle equilibrium positions generated
the simulation as the input for the force-balance method
Sec. IV. We produced parameter curves ofh vs lD for three
chains:N516, 26, and 45, as shown in Fig. 4. We found t
three curves intersect not at a common point, but nearly
with crossings atlD50.61, 0.66, and 0.71 mm.

Our test is to compare these values produced by the fo
balance method with the value that was assumed in the s
lation, lD50.66 mm. We conclude that the result from t
force-balance method is close to the actual value, with
accuracy of approximately 8%.
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VI. EXPERIMENT

Here we describe an experimental test of the for
balance method, which we will also use to test the equati
of-state method in Sec. VIII. In the experiment, we form
one-dimensional chains of various lengths in a radio f
quency~rf! plasma and we measured the particle equilibriu
positions.

We used the experimental setup sketched in Fig. 1~a!. A
plasma was produced in a capacitively-coupled rf discha
using a 13.56 MHz rf voltage with a peak-to-peak amplitu
of 94 V, yielding a self-bias of 48 V. A sheath formed imm
diately above the lower electrode, shown in Fig. 2. We us
xenon gas at a low pressure of 5 mtorr. The plasma ha
density of 1.23109 cm23 and an electron temperature of 1
eV, as measured by a Langmuir probe in the main plas
not in the sheath where the particles were levitated. We u
a shaker to introduce a small number of particles with
diameter of 8.09mm, as measured by TEM, and a ma
density of 1.514 g/cm3, as reported by the manufacturer.

To image the particles, we illuminated them with a He-N
laser sheet and viewed with a video camera at 29.97 fra
per second. The camera has a field of view of 13 mm310
mm. The video signal was digitized by a 8-bit monochrom
frame grabber and recorded as a series of images wi
resolution of 6403480 pixels. Particle positions were the
measured in each frame with subpixel spatial resolution@29#.
A particle’s velocity was calculated by subtracting its po
tions in two consecutive frames.

A one-dimensional chain was externally confined by t
natural electric fields in the sheath above the lower electro
The sheath conforms to the shape of the electrode, which

FIG. 4. Simulation results for the force-balance method fo
one-dimensional chain with a parabolic confining potential an
Yukawa interparticle potential. We computedh, which is a measure
of the relative importance of the confining potential and interp
ticle potential, from Eq.~4! using the particle positions after th
simulation reaches equilibrium. The variation ofh with lD is a
parameter curve. The parameter curves for different chain len
cross at nearly, but not exactly, the same point. This intersec
yields the parametersQ andlD for the interparticle potential.
0-4
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CHARACTERIZING POTENTIALS USING THE . . . PHYSICAL REVIEW E 69, 036410 ~2004!
a groove-shaped depression along thex direction, as shown
in Fig. 2, to form a one-dimensional chain. Everywhe
along the groove’s length, it has a parabolic shape in thy
direction, as shown schematically in Fig. 1~b!, with a depth
z5y224, wherez and y are both measured in mm. Th
depth was uniform with respect tox, the position along the
groove.

The first step of our procedure is to characterize the c
fining potential along the chain, which can be done in seve
ways, as described in Sec. II. One way is to manipulat
single particle using lasers. We found that the resonance
quency of a single particle was 0.12 Hz, corresponding
v50.75 s21, along thex axis. Another way to characteriz
the confining potential is to measure the frequency spect
of particle’s natural motion. We did this for three chains
different length, and averaged the three results, yieldingv
50.80 s21, for the x direction. Because this value is an a
erage of three measurements, and because it is not bas
the motion of a single particle~a single particle might no
happen to have a size in the middle of the particle size
persion!, we believe it is more accurate than the measu
ment for a single particle.

The confinement in the vertical direction, with a vertic
resonance frequency of 15 Hz, was strong enough to pre
any vertical buckling of the lattice. In a test, we verified th
as additional particles were added to the chain there wa
change of the vertical resonance frequency, and therefoQ
was independent ofN.

VII. EXPERIMENTAL RESULTS FOR FORCE-BALANCE
METHOD

Figure 3 shows raw images for chains of different lengt
N510, 19, and 28. Adding more particles to a chain cau
the chain to be more compressed, i.e.,a decreases withN.
Computing the average of the individual particle spacing

a5~N21!21(
i

~xi2xi 21! ~6!

in Fig. 3, we finda51.25, 0.8, and 0.73 mm, correspondin
to N510, 19, and 28, respectively.

Within the chain, the particle spacing is not uniform. T
confining potential causes the chain to be compressed a
center. This can be seen in Fig. 3, wherea is smallest in the
center of the chain, and largest at the ends.

In the force-balance method we find a parameter cu
relating the interparticle potential and the confining poten
for each chain, and then we find the intersection of the cur
for chains of different lengths, yielding the desired para
eters for the interparticle potential. For a Yukawa chain w
a parabolic confining potential, this is done using Eq.~4! to
computeh from the measured particle positions, for a p
ticular value oflD . Repeating this calculation for a range
value oflD yields the parameter curve. We prepared para
eter curves for a minimum of two chain lengths. We then fi
the intersection of two parameter curves, yielding the para
eters for the interparticle potential, which areQ and lD in
the case of a Yukawa potential. Results are shown in Fig
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for two chain lengths,N510 and 28. The two chains wer
formed at same plasma conditions, so that they should h
the sameQ andlD .

We now present results forN510 and 28. Figure 5 show
the intersection is atlD50.86 mm, which is one of the two
desired parameters. From the value ofh at the point of in-
tersection, we used Eq.~5! to computeQ/v57800e s21,
where e is the elementary charge. Usingv50.8 s21 from
Sec. VI yieldsQ56200e, which is the other desired param
eter.

We performed a test to determine how sensitively the
sult depends on the experimental precision in measuring
ticle positions. In our test, in the shorter chain which had
length of 600 pixels, we altered the position of a single p
ticle by a displacement of one pixel, which is larger than t
subpixel uncertainty in particle position. This resulted in
change oflD of 0.1%.

Next, in the force-balance method, we confirm that t
confining potential is a parabola. This is done using the
sults forQ andlD from above. Figure 6 shows the electr
field, calculated from Eq.~3!, as a function of particle posi
tion, for N510. The electric field is almost linear, whic
corresponds to a parabolic potential. We note that calcula
the electric field in this way can be used as a sensitive d
nostic tool for the sheath in a plasma. A small number
particles, levitated in a plasma, can be used to measure
potential profile, in the direction parallel to the electrode,
the sheath.

As a test, we now compare our results forQ and lD to
values obtained using another method. We observed the n
ral motions of the one-dimensional chains and measu
their dispersion relations using a method similar to that
Ref. @23#. Comparing the measured dispersion relations t
theory @30# that assumes an infinite chain length and a u
form a, we foundQ57800e andlD50.88 mm. These val-

FIG. 5. Experimental results for the force-balance method.
rameter curves ofh vs lD are shown forN510 and 28. The inter-
section of these curves yieldsQ and lD , the parameters for the
interparticle potential.
0-5
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LIU, AVINASH, AND GOREE PHYSICAL REVIEW E69, 036410 ~2004!
ues are close to the results of the force-balance method
sented above. From this comparison, we conclude that
force-balance method can yield reasonable values of the
rameters.

VIII. EQUATION-OF-STATE METHOD

In this section, we present an equation of state, describ
the relation between lattice constants, such asa andN, and
the parameters for the interparticle potential. This equa
of state is developed as an alternative to the force-bala
method; either method can be used as the second step o
procedure. This equation-of-state method requires onl
single step of solving two equations for two unknown va
ables,h and lD . The solution can be found easily using
graph ofh vs lD . This graph has a form similar to Fig. 5 fo
the force-balance method, but the data plotted forh are ob-
tained in a simpler way. As a result, this method can yield
estimation ofQ and lD much more rapidly than the force
balance method, although it is less accurate due to the
proximation that we assume a uniforma.

For any lattice, an equilibrium particle spacing corr
sponds to a minimum potential energy, i.e., the first deri
tive of the potential energyU with respect toa is zero. For a
one-dimensional chain with a parabolic confining poten
and a Yukawa interparticle potential, the total potential e
ergy is

U5
mv2a2

4 (
i 51

N/2

~2i 21!21~N21!
Q2

4pe0

e2a/lD

a

1~N22!
Q2

4pe0

e22a/lD

2a
. ~7!

This is an approximation because it assumes thata is uni-
form and it includes only the interactions with the four ne

FIG. 6. Profile of the horizontal electric field in the sheath o
plasma. We computed the electric field using the experimental
ticle positions and Eq.~3!. The data fit a straight line; this tes
serves as a confirmation that the confinement is a parabolic po
tial.
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est neighbors. Taking the first derivative of Eq.~7! and solv-
ing dU/da50 yields an equation of state

ha35
N21

(
i 51

N/2

~2i 21!2

F11k

ek
1

~N22!

~N21!

~11k!

ek G , ~8!

wherek5a/lD .
The equation of state in Eq.~8! can be used for various

purposes, depending on the information that is known. If
average particle spacinga and particle numberN are known,
it is possible to compute a parameter curve ofh vs lD ,
similar to that in the force-balance method, e.g., Fig. 5. O
can then find the intersection of a minimum of two parame
curves for chains of different lengths. This is our primary u
of Eq. ~8!. Another use of Eq.~8! is to predict the particle
spacinga, if the interparticle potential and the confining po
tential are known. Although we have not done so here,
might be useful, for example, in planning an experiment.

Using this equation-of-state method for our experimen
data, we obtainedlD50.82 mm andQ55900e. These are
reasonably close to the valueslD50.86 mm and Q
56200e obtained from the force-balance method. The forc
balance method should be more accurate than the equa
of-state method, because it does not ignore the nonunif
particle spacing and the interactions with particles beyo
the four nearest neighbors. Nevertheless, the simple met
which requires much less computational effort, yields alm
same result.

r-

n-

FIG. 7. Test of the equation-of-state method’s sensitivity toa.
Data are shown forN510. Usinga51.25 mm, which is the aver-
age particle spacing in the experiment, the equation-of-state me
yields the solid line, which agrees well with the data points from
force-balance method. Curves for the equation-of-state method
also shown for the values ofa that bracket the average value of 1.2
mm to illustrate the sensitivity of the parameter curve to the va
of a.
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In using the equation-of-state method, one must first c
culate a suitable representative value of the interpart
spacing from the experimental data. Recall that in the exp
ment, the particle spacing is not uniform, but is compres
near the center of the chain. To choose a single value ofa to
use in this method, we simply compute the average of
individual spacings using Eq.~6!. Using a51.25 mm and
Eq. ~8!, we calculated a parameter curve forN510, as
shown in Fig. 7. We note that the agreement is very go
with the data points which were computed using Eq.~4! for
the force-balance method.

As a test of the sensitivity of the equation-of-state meth
to the value ofa that is used, we also show parameter curv
calculated using Eq.~8!, for values ofa that bracket the
averagea51.25 mm. The error inQ andlD will depend on
not only the uncertainty ina, but also the slope of a param
eter curve for a second value ofN, which would intersect the
curve shown in Fig. 7. If the second curve were from t
chain withN528, a60.05 mm uncertainty ina will yield a
30% uncertainty inlD .

IX. CONCLUSIONS

A complete procedure was developed to characterize
interparticle potential for a lattice that is confined by an e
ternal potential. This procedure includes two steps: cha
terizing first the confining potential and then the interparti
potential using knowledge of particle positions. This proc
dure was demonstrated in an experiment using charged
ticles in a plasma crystal arranged in a one-dimensio
chain.

In the first step of the procedure, one must characte
the spatial profile of the confining potential. In the seco
step, the interparticle potential is characterized using ei
ica

.
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the force-balance method of Sec. III, or the equation-of-s
method of Sec. VIII. One first computes parameter curves
lattices of different sizes, and then from the intersection
the curves one can find the desired parameters for the in
particle potential.

The force-balance method is based upon the balance
tween mutual repulsion and external confinement. We tes
this method using a molecular dynamics simulation. As
alternative to the force-balance method, the equation-of-s
method was also developed, based upon an equation of s
The equation of state can predict a parameter curve, if
lattice constants, such as particle spacing and number,
known.

The potential profile in the sheath was also diagno
using the force-balance method, verifying that the confin
potential was parabolic in the experiment.

Finally, note that, after preparing this paper, we learne
method recently reported by Hebner and Riley@31# for de-
termining the interparticle potential for a one-dimension
chain confined by a parabolic potential in a dusty plasm
Their method is comparable to the force-balance method
Secs. III and IV, beginning with the same equations for fo
balance, but to determineQ andlD they use a fitting method
rather than an intersection of parameter curves. The pre
paper includes a force-balance method similar to that of R
@31#, as well as an equation-of-state method.
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